GPU | VRAM | Price (€) | Bandwidth (TB/s) | TFLOP16 | €/GB | €/TB/s | €/TFLOP16 |
---|---|---|---|---|---|---|---|
NVIDIA H200 NVL | 141GB | 36284 | 4.89 | 1671 | 257 | 7423 | 21 |
NVIDIA RTX PRO 6000 Blackwell | 96GB | 8450 | 1.79 | 126.0 | 88 | 4720 | 67 |
NVIDIA RTX 5090 | 32GB | 2299 | 1.79 | 104.8 | 71 | 1284 | 22 |
AMD RADEON 9070XT | 16GB | 665 | 0.6446 | 97.32 | 41 | 1031 | 7 |
AMD RADEON 9070 | 16GB | 619 | 0.6446 | 72.25 | 38 | 960 | 8.5 |
AMD RADEON 9060XT | 16GB | 382 | 0.3223 | 51.28 | 23 | 1186 | 7.45 |
This post is part “hear me out” and part asking for advice.
Looking at the table above AI gpus are a pure scam, and it would make much more sense to (atleast looking at this) to use gaming gpus instead, either trough a frankenstein of pcie switches or high bandwith network.
so my question is if somebody has build a similar setup and what their experience has been. And what the expected overhead performance hit is and if it can be made up for by having just way more raw peformance for the same price.
Ah, here we go:
https://huggingface.co/ubergarm/Qwen3-235B-A22B-GGUF
Ubergarm is great. See this part in particular: https://huggingface.co/ubergarm/Qwen3-235B-A22B-GGUF#quick-start
You will need to modify the syntax for 2x GPUs. I’d recommend starting f16/f16 K/V cache with 32K (to see if that’s acceptable, as then theres no dequantization compute overhead), and try not go lower than q8_0/q5_1 (as the V is more amenable to quantization).
Thanks! Ill go check it out.
One last thing: I’ve heard mixed things about 235B, hence there might be a smaller, more optimal LLM for whatever you do.
For instance, Kimi 72B is quite a good coding model: https://huggingface.co/moonshotai/Kimi-Dev-72B
It might fit in vllm (as an AWQ) with 2x 4090s. It and would easily fit in TabbyAPI as an exl3: https://huggingface.co/ArtusDev/moonshotai_Kimi-Dev-72B-EXL3/tree/4.25bpw_H6
As another example, I personally use Nvidia Nemotron models for STEM stuff (other than coding). They rock at that, specifically, and are weaker elsewhere.
What do I need to run Kimi? Does it have apple silicon compatible releases? It seems promising.
Depends. You’re in luck, as someone made a DWQ (which is the most optimal way to run it on Macs, and should work in LM Studio): https://huggingface.co/mlx-community/Kimi-Dev-72B-4bit-DWQ/tree/main
It’s chonky though. The weights alone are like 40GB, so assume 50GB of VRAM allocation for some context. I’m not sure what Macs that equates to… 96GB? Can the 64GB can allocate enough?
Otherwise, the requirement is basically a 5090. You can stuff it into 32GB as an exl3.
Note that it is going to be slow on Macs, being a dense 72B model.